Софт-Портал

графический компьютер

Рейтинг: 4.6/5.0 (477 проголосовавших)

Категория: Windows

Описание

Тема № 1

/ Лекции по компьютерной графике1 / Тема № 1. Введение в комп графику

ТЕМА № 1.ВВЕДЕНИЕ В КОМПЬЮТЕРНУЮ ГРАФИКУ

Определение и основные задачи компьютерной графики. Области применения компьютерной графики. История развития компьютерной графики. Виды компьютерной графики.

Определение и основные задачи компьютерной графики

При обработке информации, связанной с изображением на мониторе, принято выделять три основных направления: распознавание образов, обработку изображений и машинную графику.

Основная задача распознавания образов состоит в преобразовании уже имеющегося изображения на формально понятный язык символов. Распознавание образов или система технического зрения (COMPUTERVISION) – это совокупность методов, позволяющих получить описание изображения, поданного на вход, либо отнести заданное изображение к некоторому классу (так поступают, например, при сортировке почты). Одной из задач COMPUTER VISION является так называемая скелетизация объектов, при которой восстанавливается некая основа объекта, его «скелет».

Обработка изображений (IMAGE PROCESSING) рассматривает задачи в которых и входные и выходные данные являются изображениями. Например, передача изображения с устранением шумов и сжатием данных, переход от одного вида изображения к другому (от цветного к черно–белому) и т.д. Таким образом, под обработкой изображений понимают деятельность над изображениями (преобразование изображений). Задачей обработки изображений может быть как улучшение в зависимости от определенного критерия (реставрация, восстановление), так и специальное преобразование, кардинально изменяющее изображения.

При обработке изображений существует следующие группы задач:

Ограничимся работой только с цифровым изображением. Цифровые преобразования по цели преобразования можно разделить на два типа:

реставрация изображения ?компенсирование имеющегося искажения (например, плохие условия фотосъемки);

улучшение изображения ?это искажение изображения с целью улучшения визуального восприятия или для преобразования в форму, удобную для дальнейшей обработки.

Компьютерная (машинная) графика (COMPUTERGRAPHICS) воспроизводит изображение в случае, когда исходной является информация неизобразительной природы. Например, визуализация экспериментальных данных в виде графиков, гистограмм или диаграмм, вывод информации на экран компьютерных игр, синтез сцен на тренажерах.

Компьютерная графика в настоящее время сформировалась как наука об аппаратном и программном обеспечении для разнообразных изображений от простых чертежей до реалистичных образов естественных объектов. Компьютерная графика используется почти во всех научных и инженерных дисциплинах для наглядности и восприятия, передачи информации. Применяется в медицине, рекламном бизнесе, индустрии развлечений и т. д. Без компьютерной графики не обходится ни одна современная программа. Работа над графикой занимает до 90% рабочего времени программистских коллективов, выпускающих программы массового применения.

Конечным продуктом компьютерной графики является изображение. Это изображение может использоваться в различных сферах, например, оно может быть техническим чертежом, иллюстрацией с изображением детали в руководстве по эксплуатации, простой диаграммой, архитектурным видом предполагаемой конструкции или проектным заданием, рекламной иллюстрацией или кадром из мультфильма.

Компьютерная графика – это наука, предметом изучения которой является создание, хранение и обработка моделей и их изображений с помощью ЭВМ, т.е. это раздел информатики, который занимается проблемами получения различных изображений (рисунков, чертежей, мультипликации) на компьютере.

В компьютерной графике рассматриваются следующие задачи:

представление изображения в компьютерной графике;

подготовка изображения к визуализации;

осуществление действий с изображением.

Под компьютерной графикой обычно понимают автоматизацию процессов подготовки, преобразования, хранения и воспроизведения графической информации с помощью компьютера. Под графической информацией понимаются модели объектов и их изображения.

В случае, если пользователь может управлять характеристиками объектов, то говорят об интерактивной компьютерной графике, т.е. способность компь­ютерной системы создавать графику и вести диалог с человеком.В настоящее время почти любую программу можно считать системой интер­активной компьютерной графики.

Интерактивная компьютерная графика – это так же использование компьютеров для подготовки и воспроизведения изображений, но при этом пользователь имеет возможность оперативно вносить изменения в изображение непосредственно в процессе его воспроизведения, т.е. предполагается возможность работы с графикой в режиме диалога в реальном масштабе времени.

Интерактивная графика представляет собой важный раздел компьютерной графики, когда пользователь имеет возможность динамически управлять содержимым изображения, его формой, размером и цветом на поверхности дисплея с помощью интерактивных устройств управления.

Исторически первыми интерактивными системами считаются системы автоматизированного проектирования (САПР ), которые появились в 60-х годах. Они представляют собой значительный этап в эволюции компьютеров и программного обеспечения. В системе интерактивной компьютерной графики пользователь воспринимает на дисплее изображение, представляющее некоторый сложный объект, и может вносить изменения в описание (модель) объекта. Такими изменениями могут быть как ввод и редактирование отдельных элементов, так и задание числовых значений для любых параметров, а также иные операции по вводу информации на основе восприятия изо­бражений.

Системы типа САПР активно используются во многих областях, например в машиностроении и электронике. Одними из первых были созданы САПР для проектирования самолетов, автомобилей, системы для разработки микроэлектронных интегральных схем, архитектурные системы. Такие системы на первых порах функционировали на достаточно больших компьютерах. Потом распространилось использование быстродействующих компьютеров средне­го класса с развитыми графическими возможностями – графических рабо­чих станций. С ростом мощностей персональных компьютеров все чаще САПР использовали на дешевых массовых компьютерах, которые сейчас имеют достаточные быстродействие и объемы памяти для решения многих задач. Это привело к широкому распространению систем САПР.

Сейчас становятся все более популярными геоинформационныесистемы (ГИС ). Это относительно новая для массовых пользователей разновидность системинтерактивной компьютерной графики. Они аккумулируют в себе методы и алгоритмы многих наук и информационных технологий. Такие сис­темы используют последние достижения технологий баз данных, в них зало­жены многие методы и алгоритмы математики, физики, геодезии, топологии, картографии, навигации и, конечно же, компьютерной графики. Системы ти­паГИС зачастую требуют значительных мощностей компьютера как в плане работы с базами данных, так и для визуализации объектов, которые находят­ся на поверхности Земли. Причем, визуализацию необходимо делать с раз­личной степенью детализации – как для Земли в целом, так и в границах отдельных участков. В настоящее время заметно стремление разра­ботчиков ГИС повысить реалистичность изображений пространственных объектов и территорий.

Работа с компьютерной графикой – одно из самых популярных направлений использования персонального компьютера, причем занимаются этой работой не только профессиональные художники и дизайнеры. На любом предприятии время от времени возникает необходимость в подаче рекламных объявлений в газеты и журналы, в выпуске рекламной листовки или буклета. Иногда предприятия заказывают такую работу специальным дизайнерским бюро или рекламным агентствам, но часто обходятся собственными силами и доступными программными средствами.

Типичными для любой ГИС являются такие операции – ввод и редактирование объектов с учетом их расположения на поверхности Земли, формирование разнообразных цифровых моделей, запись в базы данных, выполнение разнообразных запросов к базам данных. Важной операцией является анализ с учетом пространственных, топологических отношений множества объектов, расположенных на некоторой территории.

История развития компьютерной (машинной) графики

Компьютерная графика насчитывает в своем развитии не более десятка лет, а ее коммерческим приложениям – и того меньше. Андриес ван Дам считается одним из отцов компьютерной графики, а его книги – фундаментальными учебниками по всему спектру технологий, положенных в основу машинной графики. Также в этой области известенАйвэн Сазерленд. чья докторская диссертация явилась теоретической основой машинной графики.

До недавнего времени экспериментирование по использованию возможностей интерактивной машинной графики было привилегией лишь небольшому количеству специалистов, в основном ученые и инженеры, занимающиеся вопросами автоматизации проектирования, анализа данных и математического моделирования. Теперь же исследование реальных и воображаемых миров через «призму» компьютеров стало доступно гораздо более широкому кругу людей.

Такое изменение ситуации обусловлено несколькими причинами. Прежде всего, в результате резкого улучшения соотношения стоимость / производительность для некоторых компонент аппаратуры компьютеров. Кроме того, стандартное программное обеспечение высокого уровня для графики стало широкодоступным, что упрощает написание новых прикладных программ, переносимых с компьютеров одного типа на другие.

Следующая причина обусловлена влиянием, которое дисплеи оказывают на качество интерфейса – средства общения между человеком и машиной, – обеспечивая максимальные удобства для пользователя. Новые, удобные для пользователя системы построены в основном на подходеWYSIWYG (аббревиатура от английского выражения «What you see is what you get» – «Что видите, то и имеете »), в соответствии с которым изображение на экране должно быть как можно более похожим на то, которое в результате печатается.

Большинство традиционных приложений машинной графики являются двумерными. В последнее время отмечается возрастающий коммерческий интерес к трехмерным приложениям. Он вызван значительным прогрессом в решении двух взаимосвязанных проблем: моделирования трехмерных сцен и построения как можно более реалистичного изображения. Например, в имитаторах полета особое значение придается времени реакции на команды, вводимые пилотом и инструктором. Чтобы создавалась иллюзия плавного движения, имитатор должен порождать чрезвычайно реалистичную картину динамически изменяющегося «мира» с частотой как минимум 30 кадров в секунду. В противоположность этому изображения, применяемые в рекламе и индустрии развлечений, вычисляют автономно, нередко в течение часов, с целью достичь максимального реализма или произвести сильное впечатление.

Развитие компьютерной графики, особенно на ее начальных этапах, в первую очередь связано с развитием технических средств и в особенности дисплеев:

произвольное сканирование луча;

растровое сканирование луча;

дисплеи с эмиссией полем.

Произвольное сканирование луча. Дисплейная графика появилась, как попытка использоватьэлектроннолучевые трубки (ЭЛТ ) с произвольным сканированием луча для вывода изображения из ЭВМ. Как пишет Ньюмен "по–видимому, первой машиной, где ЭЛТ использовалась в качестве устройства вывода была ЭВМ Whirlwind–I (Ураган–I), изготовленная в 1950г. в Массачусетском технологическом институте. С этого эксперимента начался этап развития векторных дисплеев (дисплеев спроизвольным сканированием луча ,каллиграфическихдисплеев ). На профессиональном жаргоне вектором называется отрезок прямой. Отсюда и происходит название «векторный дисплей ».

При перемещении луча по экрану в точке, на которую попал луч, возбуждается свечение люминофора экрана. Это свечение достаточно быстро прекращается при перемещении луча в другую позицию (обычное время послесвечения – менее 0.1 с). Поэтому, для того чтобы изображение было постоянно видимым, приходится его перевыдавать (регенерировать изображение) 50 или 25 раз в секунду. Необходимость перевыдачи изображения требует сохранения его описания в специально выделенной памяти, называемой памятью регенерации. Само описание изображения называется дисплейным файлом. Понятно, что такой дисплей требует достаточно быстрого процессора для обработки дисплейного файла и управления перемещением луча по экрану.

Обычно серийные векторные дисплеи успевали 50 раз в секунду строить только около 3000–4000 отрезков. При большем числе отрезков изображение начинает мерцать, так как отрезки, построенные в начале очередного цикла, полностью погасают к тому моменту, когда будут строиться последние.

Другим недостатком векторных дисплеев является малое число градаций по яркости (обычно 2–4). Были разработаны, но не нашли широкого применения двух–трехцветные ЭЛТ, также обеспечивавшие несколько градаций яркости.

В векторных дисплеях легко стереть любой элемент изображения – достаточно при очередном цикле построения удалить стираемый элемент из дисплейного файла.

Текстовый диалог поддерживается с помощью алфавитно–цифровой клавиатуры. Косвенный графический диалог, как и во всех остальных дисплеях, осуществляется перемещением перекрестия (курсора) по экрану с помощью тех или иных средств управления перекрестием – координатных колес, управляющего рычага (джойстика), трекбола (шаровой рукоятки), планшета и т.д. Отличительной чертой векторных дисплеев является возможность непосредственного графического диалога, заключающаяся в простом указании с помощью светового пера объектов на экране (линий, символов и т.д.). Для этого достаточно с помощью фотодиода определить момент прорисовки и, следовательно, начала свечения люминофора) любой части требуемого элемента.

Первые серийные векторные дисплеи за рубежом появились в конце 60–х годов.

Растровое сканирование луча. Прогресс в технологии микроэлектроники привел к тому, с середины 70–х годов подавляющее распространение получили дисплеи с растровым сканированием луча.

Запоминающие трубки. В конце 60–х годов появилась запоминающая ЭЛТ, которая способна достаточно длительное время (до часа) прямо на экране хранить построенное изображение. Следовательно, не обязательна память регенерации и не нужен быстрый процессор для выполнения регенерации изображения. Стирание на таком дисплее возможно только для всей картинки в целом. Сложность изображения практически не ограничена. Разрешение, достигнутое на дисплеях на запоминающей трубке, такое же, как и на векторных или выше – до 4096 точек.

Текстовый диалог поддерживается с помощью алфавитно–цифровой клавиатуры, косвенный графический диалог осуществляется перемещением перекрестия по экрану обычно с помощью координатных колес.

Появление таких дисплеев с одной стороны способствовало широкому распространению компьютерной графики, с другой стороны представляло собой определенный регресс, так как распространялась сравнительно низкокачественная и низкоскоростная, не слишком интерактивная графика.

Плазменная панель. В 1966г. была изобретена плазменная панель, которую упрощенно можно представить как матрицу из маленьких разноцветных неоновых лампочек, каждая из которых включается независимо и может светиться с регулируемой яркостью. Ясно, что системы отклонения не нужно, не обязательна также и память регенерации, так как по напряжению на лампочке можно всегда определить горит она ли нет, т.е. есть или нет изображение в данной точке. В определенном смысле эти дисплеи объединяют в себе многие полезные свойства векторных и растровых устройств. К недостаткам следует отнести большую стоимость, недостаточно высокое разрешение и большое напряжение питания. В целом эти дисплеи не нашли широкого распространения.

Жидкокристаллические индикаторы. Дисплеи на жидкокристаллических индикаторах работают аналогично индикаторам в электронных часах, но, конечно, изображение состоит не из нескольких сегментов, а из большого числа отдельно управляемых точек. Эти дисплеи имеют наименьшие габариты и энергопотребление, поэтому широко используются в портативных компьютерах несмотря на меньшее разрешение, меньшую контрастность и заметно большую цену, чем для растровых дисплеев на ЭЛТ.

Электролюминисцентные индикаторы. Наиболее высокие яркость, контрастность, рабочий температурный диапазон и прочность имеют дисплеи на электролюминисцентных индикаторах. Благодаря достижениям в технологии они стали доступны для применения не только в дорогих высококлассных системах, но и в общепромышленных системах. Работа таких дисплеев основана на свечении люминофора под воздействием относительно высокого переменного напряжения, прикладываемого к взаимноперпендикулярным наборам электродов, между которыми находится люминофор.

Дисплеи с эмиссией полем. Дисплеи на электронно–лучевых трубках, несмотря на их относительную дешевизну и широкое распространение, механически непрочны, требуют высокого напряжения питания, потребляют большую мощность, имеют большие габариты и ограниченный срок службы, связанный с потерей эмиссии катодами. Одним из методов устранения указанных недостатков, является создание плоских дисплеев с эмиссией полем с холодных катодов в виде сильно заостренных микроигл.

Таким образом, стартовав в 1950г. компьютерная графика к настоящему времени прошла путь от экзотических экспериментов до одного из важнейших, всепроникающих инструментов современной цивилизации, начиная от научных исследований, автоматизации проектирования и изготовления, бизнеса, медицины, экологии, средств массовой информации, досуга и кончая бытовым оборудованием.

Области применения компьютерной графики

Область применения компьютерной графики не ограничивается одними художественными эффектами. Во всех отраслях науки, техники, медицины, в коммерческой и управленческой деятельности используются построенные с помощью компьютера схемы, графики, диаграммы, предназначенные для наглядного отображения разнообразной информации. Конструкторы, разрабатывая новые модели автомобилей и самолетов, используют трехмерные графические объекты, чтобы представить окончательный вид изделия. Архитекторы создают на экране монитора объемное изображение здания, и это позволяет им увидеть, как оно впишется в ландшафт.

Можно рассмотреть следующие области применения компьютерной графики.

Первые компьютеры использовались лишь для решения научных и производственных задач. Чтобы лучше понять полученные результаты, производили их графическую обработку, строили графики, диаграммы, чертежи рассчитанных конструкций. Первые графики на машине получали в режиме символьной печати. Затем появились специальные устройства – графопостроители (плоттеры) для вычерчивания чертежей и графиков чернильным пером на бумаге. Современная научная компьютерная графика дает возможность проводить вычислительные эксперименты с наглядным представлением их результатов.

Деловая графика – область компьютерной графики, предназначенная для наглядного представления различных показателей работы учреждений. Плановые показатели, отчетная документация, статистические сводки – вот объекты, для которых с помощью деловой графики создаются иллюстративные материалы. Программные средства деловой графики включаются в состав электронных таблиц.

Конструкторская графика используется в работе инженеров–конструкторов, архитекторов, изобретателей новой техники. Этот вид компьютерной графики является обязательным элементом САПР (систем автоматизации проектирования). Средствами конструкторской графики можно получать как плоские изображения (проекции, сечения), так и пространственные трехмерные изображения.

графический компьютер:

  • скачать
  • скачать
  • Другие статьи, обзоры программ, новости

    Компьютерная графика - это

    компьютерная графика это:

    компьютерная графика компью?терная гра?фика

    визуализация изображения информации на экране дисплея (монитора). В отличие от воспроизведения изображения на бумаге или ином носителе, изображение, созданное на экране, можно почти немедленно стереть или (и) подправить, сжать или растянуть, приблизить или отдалить, изменить ракурс, цвет, заставить двигаться и т. д. Применяется при конструировании и моделировании, создании телерекламы, мультфильмов, заставок телепередач, визуальных эффектов в кино, при оформлении книг и пр.

    КОМПЬЮ?ТЕРНАЯ ГРА?ФИКА (машинная графика; CG, Computer Graphics), создание, обработка графических изображений, их отображение (например, на экране монитора, в виде твердых копий) и манипулирования ими с использованием вычислительной техники (см. ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА ).
    Наиболее распространенными операциями компьютерной графики являются: ввод графических изображений при помощи сканера (см. СКАНЕР ). цифровая фотосъемка, рисование или черчение с использованием манипулятора мышь (см. МЫШЬ компьютерная ). графического планшета или светового пера, а также отображение изображений на экране монитора (см. МОНИТОР компьютерный ) и внесение в них изменений (редактирование). Графические приложения связаны с созданием изображений в трехмерном пространстве и компьютерной анимацией. Компьютерная графика используется в системах САПР (в машиностроении, приборостроении), в медицине, метеорологии, других областях науки и техники, прикладных видах изобразительного искусства, а также индустрии развлечений и отдыха.
    Разновидности машинной графики
    Растровая графика (raster graphics) — вид компьютерной графики, используемой в приложениях, в частности, для рисования, близкого по технике к традиционному процессу (на бумаге или холсте). Данные в памяти ЭВМ хранятся в виде «карты» яркости и цвета для каждого элемента изображения (пикселя) или прямоугольной матрицы пикселей (bitmap), дополненной данными о цвете и яркости каждого из них, а также способе сжатия записи и другими сведениями которые могут содержаться в «заголовке» и «концовке» файла.
    Векторная графика (vector graphics) — вид компьютерной графики, используемой в приложениях для рисования. В отличие от растровой графики позволяет пользователю создавать и модифицировать исходные изобразительные образы при подготовке рисунков, технических чертежей и диаграмм путем их вращения, увеличения или уменьшения, растягивания. Графические образы создаются и хранятся в памяти ЭВМ в виде формул, описывающих различные геометрические фигуры, которые являются компонентами изображения. Помимо данных, описывающих изображение, векторные файлы содержат «заголовок», где отражается общая для чтения файла информация, и «палитру», в которой помещаются сведения о цвете всех (в том числе наименьших) объектов изображения.
    Каллиграфическая графика (calligraphic graphic) — область растровой графики, в которой изображения объектов формируются из отрезков прямых линий, имеющих различную длину и ориентацию. Типичным примером является формирование каркасных или проволочных (wire-frame) изображений объектов на экране монитора.
    Штриховая графика (line-art image) — разновидность компьютерной графики, построенная на технике создания изображений штрихами — «штриховых изображений».
    Термины машинной графики

    Альфа-канал (alpha channel) — дополнительный канал растровых данных, используемый для хранения сведений о прозрачности изображения (попиксельной, поблочной или для всего изображения). Степень прозрачности пикселя, заданная восьмибитовым альфа-значением, находится в интервале от 0 (пиксель полностью невидим — прозрачен) до 255 (пиксель полностью виден — непрозрачен).
    Воксел (voxel) — минимальный адресуемый объемный элемент изображения трехмерного пространства — трехмерный пиксель.
    Метафайл (metafile) — файл, который содержит элементы изображения, выполненный с использованием как растровой, так и векторной графики. Термин введен в употребление Комитетом по графическим стандартам и планированию SGGRAPH в 1997 году, соответствующие форматы записи называют «метафайловыми». Их отличает облегченный перенос с одной системы на другую; меньший размер по отношению к растровой версии того же изображения; обычно метафайлы хорошо сжимаются. Однако работа с метафайлами сложна и требует специальной подготовки.
    Пиксел (pixel, picture element) — минимальный адресуемый элемент двумерного растрового изображения.
    Растр (raster) — дискретное изображение, представленное в виде матрицы «точечных» элементов — пикселей.
    Z-buffer — специальный буфер памяти, в котором хранятся сведения о глубине объектов, заполняющих сцену. На основе этих данных формируется порядок отрисовки объектов (чем больше разрядность буфера, тем точнее формируемая модель. Z-buffer называют также массив, в котором хранятся данные о положении каждой точки трехмерного изображения по оси Z (глубина положения точки).
    Термины, связанные с формированием цвета и уровня яркости изображения:
    Шкала уровней серого (gray scale) — количество одновременно отображаемых оттенков яркости одного цвета. Оттенок серого — любой составной цвет, у которого все три основных цвета заданы одним и тем же значением. Оттенки серого характеризуются только яркостью, но не цветностью. Обычно определяется по монохромному (черно-белому) изображению.
    Полутоновое изображение — изображение, состоящие из различных оттенков яркости – уровней серого, передается группами мелких (черных) точек обычно сгруппированных в матрице 4х4 или 8х8.
    Дитеринг (dithering) в компьютерной графике — техника изменения точек в изображении для передачи оттенков серого. Все точки при этом имеют одинаковые размер и яркость в отличие от передачи оттенков (градаций) серого, когда каждая точка имеет свою яркость, а также фотографического воспроизведения полутонов, при котором точки имеют различные размеры. Дитерингом называют также процесс замены цветов, не поддерживаемых данным видеорежимом, на комбинацию допустимых цветов или отображения цветов, отсутствующих в устройстве вывода. Области отсутствующего цвета создаются путем «смешивания» монохромных пиксельных значений со значениями пикселей имеющегося цвета, что обеспечивает достижение цветового эффекта.
    Цветность (chrominance) — цветовая характеристика изображения, представляет собой набор данных о цвете, насыщенности и яркости или сочетании трех первичных цветов (красного, зеленого и синего).
    Цветовая модель (color model) — способ распределения и задания цвета в конкретной программе или системе. Все используемые в компьютерной графике цветовые модели можно условно подразделить на монохромные (в том числе двухградационные или графические и полутоновые) и цветные (в том числе индексные и полноцветные).
    RGB (Red-Green-Blue) — аддитивная цветовая модель получения (задания) характеристик изображения на экране монитора путем сложения трех составляющих его цветов — красного, зеленого и синего. В этой модели на каждый пиксел выделяется 24 бита памяти (по 8 на каждый из суммируемых компонентов), что дает возможность кодирования до 16,8 млн. цветовых оттенков.
    CIE Lab — аддитивная цветовая модель построения изображения, которое описывается в системе трех осей координат: светности или яркости (ось L — Lightness, меняется от 0 до 100), цветовой координаты — оси a), меняющейся от зеленого до красного цвета (от -120 до + 120) и цветовой координаты — оси b), меняющейся от синего до желтого цвета (от -120 до +120). Модель разработана CIE (Comission International de I`Eclairage) в 1931 году для создания на ее основе стандарта для измерения цвета. В 1976 году после усовершенствования она получила наименование CIE Lab. Отличительной особенностью модели является ее аппаратурная независимость (одинаково выглядит как на мониторе, так и принтере), поэтому она используется в качестве эталонной в системах управления цветом.
    HSB — перцепционная цветовая модель построения изображения. Ее цветовыми компонентами являются: Hue — цветовой тон, измеряемый в градусах (от 0 до 3600) по стандартному цветовому кругу; Saturation — насыщенность (от 0 до 100%); Brightness — яркость (от 0 до 100%).
    HLS — перцепционная цветовая модель построения изображения по компонентам Hue (цветовой тон), Lightness (освещенность), Saturation (насыщенность); представляет собой вариант модели HSB, в которой нелинейный параметр B (Brightness) заменен на линейный компонент L (Lightness), который изменяется от 0 до 100%.
    YUV — перцепционная цветовая модель построения изображения, которое описывается в системе трех осей координат (Y, U, V): первая — яркости, две последующие — цветности. Нулевое значение яркости, независимо от значений компонент U и V, определяет черный цвет. Максимальному значению яркости соответствует белый цвет, независимо от значений U и V. Цветовая модель YUV используется в европейском телевизионном стандарте PAL; часто применяется и в компьютерной графике, например, в форматах JPEG.
    CMYK — субтрактивная цветовая модель построения графического пространства в отраженном свете основана на использовании трех базисных цветов: Cyan — голубого, Magenta — пурпурного, Yellow — желтого. Черный цвет (blacK) образуется наложением базисных цветов, взятых с максимальной плотностью, однако чисто черного цвета при этом достичь не удается. Попарное наложение двух базисных цветов, взятых с максимальной плотностью, позволяет получить цвета, близкие к модели RGB.
    YIQ — цветовая модель, разработана в 1953 году для передающих телевизионных систем, поддерживающих североамериканский стандарт NTSC. Каждый цвет задается путем установки значений трех компонент: интенсивности — Y и двух цветовых — I («синфазной») и Q («интегрированной»), позволяющих совместно управлять созданием цвета телевизионного изображения. Каждая из компонент YIQ модели может изменяться в диапазоне от 0 до 255. В случае использования монохромного дисплея на экране будет отображена только компонента Y. Для воспроизведения на экране телевизора цвета модели YIQ автоматически конвертируются в RGB. В компьютерной графике эта модель не используется.
    Профиль ICC (ICC-profile) — совокупность математических описаний цветовых пространств разных устройств, принятая ICC (International Color Consortium) и предназначенная для пересчета цветовых координат от одной модели к другой, а также специальный файл, в котором хранится математическое описание цветового охвата конкретного устройства, и таблица коэффициентов для коррекции вносимых им искажений цвета. Файлы ICC имеют стандартное расширение.icm. Стандарт ICC различает профили входных устройств (сканеры, цифровые аппараты), профили мониторов, профили выходных устройств (принтеры, плоттеры).
    Цветовой охват (color gamut) — количество цветовых оттенков, которое способен различать человек либо воспроизводить то или иное устройство.
    Цветовой канал (color channel) — изображение в градациях серого, содержащее распределение яркости для какого-либо базисного цвета, а также цветовая палитра (palette) в компьютерной графике. Под цветовой палитрой понимают общее количество цветов и цветовых оттенков, используемых в графической системе и/или доступных для построения изображения на экране монитора и указание видеоадаптеру на генерацию аналогового сигнала, соответствующего коду цвета в одной из моделей его задания (RGB, HLS, HSV).
    Цветовая гамма (color gamut) — диапазон цветов, которые могут отображаться с помощью данной цветовой модели или устройства отображения.
    Комбинированный цвет (composite color) — цвет, заданный в цветовой модели посредством упорядоченного набора и система, в которой для задания цвета используются несколько цветовых каналов.
    Косвенный цвет (inderect color) — цвет, определенный при помощи палитры или таблицы цветов.
    Bilinear sampling (filtering) — комбинация четырех цветов, используемая для увеличения разрешения выводимого трехмерного изображения.
    Система управления цветом (Color Management System, CMS) — программный комплекс, обеспечивающий согласование цветовых пространств различных устройств (сканеров, мониторов, принтеров, печатающих машин), используемых при подготовке и выводе изображений. Основные компоненты системы: 1) аппаратно независимое эталонное цветовое пространство; 2) цветовые профили отдельных устройств, подвергаемых согласованию; 3) модуль управления цветом CMM.
    Модуль управления цветом (Color Management Module, CMM) — программный продукт, в функции которого входит преобразование аппаратно зависимого цветового пространства входного устройства в эталонное с последующим его пересчетом в аппаратно зависимое цветовое пространство выходного устройства.
    Объекты, операции и другие термины машинной графики:
    Артефакт (artifact) в машинной графике — фиксируемое изменение изображения, полученное в результате использования какой-либо программы или средства (редактирования, сжатия или распаковки). Проявлениями артефактов могут служить изменения в виде добавления в изображение какого-либо элемента или ухудшение его качества. По признакам, определяющим причины появления артефактов, выделяют артефакты сжатия (compression artifact) и квантования (quantization artifact).
    Бандинг (banding) — вертикальные, горизонтальные или диагональные полосы обесцвечивания, неумышленно внесенные в изображение в процессе его создания или визуализации.
    Вырезание (cut) — операция редактирования изображения, связанная с удалением выделенной его части и переносом в специальную буферную память — буфер вставки (paste buffer). При необходимости удаленная часть (вырезка, cutout) может быть установлена в заданное место изображения.
    Вставка (paste) — операция редактирования изображения, заключающаяся в перемещении выбранного фрагмента из области памяти (в том числе из буфера вставки или библиотеки файлов изображений, хранящейся во внешней памяти, например на жестком диске) в заданное место.
    Градиентное заполнение (gradient fill) — заполнение замкнутой области части изображения непрерывным цветом, который создается из двух других, расположенных в противоположных концах этой области путем плавного перехода от одного цвета к другому.
    Заливка (flood filling) — однотонная закраска изображений плоских графических форм, имеющих четкие границы; производится автоматически путем указания цвета в любой точке, находящейся в пределах замкнутого пространства окружающих ее границ.
    Конвейер (conveyor) — процесс визуализации трехмерного изображения, включающий этапы: построение трехмерной каркасной модели; проведение геометрических преобразований, включающее отбрасывание невидимых поверхностей и наложение установок освещенности; рендеринг.
    Фрактал (fractal от лат. fractus — разбитый) — неравномерная форма или поверхность, получаемая в результате процедуры повторяющегося деления. Фракталы используются для моделирования и отображения средствами компьютерной графики различного рода процессов (биологических, географических), связанных с изменением исходного состояния сложных объектов, например: рост различных организмов, изменение фарватеров рек, береговой черты.
    Графтал (graftal) — класс графических объектов, обладающих свойствами фракталов, правила генерации которых допускают локальные модификации свойств.
    Тесселяция — геометрическое преобразование сложных объектов на совокупность более простых, называемых также примитивами.
    Примитив (графический примитив, primitive) — элементарный графический объект (линия, прямоугольник, треугольник, окружность, конус, тор, куб), используемый в графической системе в качестве шаблона для построения более сложных графических объектов. Примитив является составной частью набора графических примитивов (parcel), предназначенного для реализации эффективного построения изображений объектов.
    Графический объект (graphics object) — совокупность графических примитивов, соответствующих одному объекту отображаемого пространства или сцены.
    Спрайт (sprite) — графический объект заданной формы и цвета, созданный из набора пикселей, который служит готовой формой для создания других графических объектов. Существуют программы, позволяющие пользователю определять форму, цвет и другие характеристики исходных графических объектов, объединяя и комбинируя которые можно создавать на экране монитора необходимые изображения, включая и изображения компьютерной анимации.
    Extrusion — построение трехмерной модели в машинной графике путем «выдавливания» или «выталкивания» двумерного компонента (поперечного сечения объекта) в определенном направлении — обычно по оси Z.
    Lathing — построение фигуры вращения в трехмерной машинной графике путем поворота главного сечения объекта.
    Mesh — разбиение поверхности графического объекта на многоугольники (треугольники, квадраты); обычно используется для ускорения операций преобразования или отображения.
    Profile — в машинной графике главное (поперечное) сечение геометрического объекта.
    Prototile — геометрическая фигура, используемая для многократного заполнения плоскости по принципу узора («черепицы»).
    Pattern — двумерный растровый шаблон, используемый для заполнения изображения поверхностей различных графических объектов путем многократного дублирования.
    Stipple — растровое изображение, состоящее из многократно повторяющихся шаблонов, используемых в качестве трафаретов при заполнении фона.

    Энциклопедический словарь. 2009 .

    Смотреть что такое "компьютерная графика" в других словарях:

    Компьютерная графика — технология создания и обработки графических изображений средствами вычислительной техники. Компьютерная графика изучает методы получения изображений полученных на основании невизуальных данных или данных, созданных непосредственно пользователем.… … Финансовый словарь

    компьютерная графика — Создание произведений искусства (рисунки, анимация и т.д.) на экране монитора с помощью компьютерного программного обеспечения с возможностью хранения в электронном виде (цифровом или аналоговом) или вывода на печать. [http://www.morepc.ru/dict/] … Справочник технического переводчика

    Компьютерная графика — (МАШИННАЯ ГРАФИКА) 1) создание при помощи аппаратных и программных средств компьютерной техники новых шрифтов, штриховых (графических) изображений (как черно белых, так и цветных), мультипликационных изображений, сложных изобразительных монтажей … Реклама и полиграфия

    КОМПЬЮТЕРНАЯ ГРАФИКА — КОМПЬЮТЕРНАЯ ГРАФИКА, иллюстрации, полученные при помощи КОМПЬЮТЕРА. Простые фигуры и графики можно выполнить, пользуясь клавиатурой. Для сложных изображений нужна мышь или аналогичное устройство ввода, например, графический планшет, и… … Научно-технический энциклопедический словарь

    Компьютерная графика — Изображения, полученные с помощью компьютера, которые могут существовать в виде печатных документов, графических рисунков или мультипликации, но термин «К.г.» относится в основном к изображениям, демонстрируемым на экране монитора. В памяти… … Энциклопедия культурологии

    КОМПЬЮТЕРНАЯ ГРАФИКА — КОМПЬЮТЕРНАЯ ГРАФИКА. Воспроизведение изобразительной информации на экране монитора. В отличие от изображения на бумаге или ином носителе, изображение, созданное компьютером на экране, можно стереть и исправить, сжать или растянуть в любом… … Новый словарь методических терминов и понятий (теория и практика обучения языкам)

    КОМПЬЮТЕРНАЯ ГРАФИКА — формирование с помощью специальных алгоритмов на дисплее ЭВМ чёрно белых млн. цветных изображений как плоскостных двухмерных, так и объёмных трёхмерном пространстве в ортогональной проекции или стереоскопической перспективе. Изображения могут… … Большая политехническая энциклопедия

    Компьютерная графика — (также машинная графика)  область деятельности, в которой компьютеры используются как инструмент для синтеза (создания) изображений, так и для обработки визуальной информации, полученной из реального мира. Также компьютерной графикой… … Википедия

    компьютерная графика — kompiuterine grafika statusas T sritis automatika atitikmenys: angl. computer graphics vok. Computergraphik, f; graphische Datenverarbeitung, f rus. компьютерная графика, f; машинная графика, f pranc. infographie, f … Automatikos terminu zodynas

    компьютерная графика — ввод, вывод, отображение, преобразование и редактирование графических объектов под управлением компьютера. Компьютер является мощным и удобным средством для создания и редактирования графических изображений при оформлении печатных изданий, писем … Энциклопедия техники

    Книги
    • Компьютерная графика. Джесси Рассел. High Quality Content by WIKIPEDIA articles!Компью?терная гра?фика (также маши?нная гра?фика) — область деятельности, в которой компьютеры используются как инструмент для синтеза (создания)… Подробнее Купить за 998 руб
    • Компьютерная графика. Аркадий Божко. Рассмотрены физические основы цветовосприятия и особенности самых распространенных цветовых моделей. Дано представление о принципах измерения цвета и калибровки устройств ввода-вывода.… Подробнее Купить за 531 руб электронная книга
    • Компьютерная графика. М. Кэмпбелл. Книга о работе в графических программах, в частности в про­фессиональном приложении Аdоbе Illustrator— для тех, кто хо­чет всерьез освоить компьютерную графику, чтобы стать совре­менным… Подробнее Купить за 264 руб
    Другие книги по запросу «компьютерная графика» >>